A study of communication pathways in methionyl- tRNA synthetase by molecular dynamics simulations and structure network analysis.

نویسندگان

  • Amit Ghosh
  • Saraswathi Vishveshwara
چکیده

The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by approximately 70 A in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of All-atom Molecular Dynamics Simulation and Coarse-grained Normal Mode Analysis in Identifying Pre-existing Residue Interaction Networks that Promote Coupled-Domain Dynamics in Escherichia coli Methionyl-tRNA Synthetase

Inter-domain communication plays a key role in the function of modular proteins. Earlier studies have demonstrated that the coupling of domain motions is important in mediating site-to-site communications in modular proteins. In the present study, bioinformatics and molecular simulations were used to trace “pre-existing” residue-residue interaction networks that mediate coupled-domain dynamics ...

متن کامل

Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations

Coarse-grained simulations have emerged as invaluable tools for studying conformational changes in biomolecules. To evaluate the effectiveness of computationally inexpensive coarse-grained models in studying global and local dynamics of large protein systems like aminoacyl-tRNA synthetases, we have performed coarse-grained normal mode analysis, as well as principle component analysis on traject...

متن کامل

Dynamical networks in tRNA:protein complexes.

Community network analysis derived from molecular dynamics simulations is used to identify and compare the signaling pathways in a bacterial glutamyl-tRNA synthetase (GluRS):tRNA(Glu) and an archaeal leucyl-tRNA synthetase (LeuRS):tRNA(Leu) complex. Although the 2 class I synthetases have remarkably different interactions with their cognate tRNAs, the allosteric networks for charging tRNA with ...

متن کامل

Allosteric communication in cysteinyl tRNA synthetase: a network of direct and indirect readout.

Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation reg...

متن کامل

Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks.

The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of allostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 40  شماره 

صفحات  -

تاریخ انتشار 2007